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Abstract

[Drapeau, M.D., Gass, E.K., Simison, M.D., Mueller, L.D., Rose, M.R., 2000. Testing the heterogeneity theory of late-life mortality

plateaus by using cohorts of Drosophila melanogaster, Experimental Gerontology, 35 71–84.] tested, in populations of Drosophila

melanogaster, a prediction of the heterogeneity explanation for mortality plateaus. They concluded that heterogeneity could not explain their

results. We contend here that the statistical analysis was flawed. It was declared that there was no difference between the mortality plateaus of

three different strains, on the basis of averaged outcomes. In fact, the results for the different strains were quite different. Most trials showed

the expected lowering of the mortality plateaus for the flies selected for robustness, but these effects were washed out by a small number of

very large opposing deviations. There is ample reason to believe that the opposing deviations are artifacts of fitting an overly restrictive

hazard-rate model. When we fit more appropriate models, the evidence points toward a rejection of the null hypothesis (of identical plateaus),

hence toward modest support for the heterogeneity explanation.

q 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The analysis of experimental lifespan data is fraught with

statistical difficulties. The difficulties are multiplied when

we examine mortality rates for the ‘oldest old’, when sample

sizes have dwindled. Wang et al. (1998) have argued, for

example, that inappropriate parametric estimators, com-

bined with an inadequate treatment of data-censoring, led

Brooks et al. (1994) to favor an unwarranted fixed-frailty

interpretation of mortality deceleration in nematodes. (For

an account of general biodemographic issues related to

mortality deceleration, see (Vaupel et al., 1998; Pletcher and

Curtsinger, 1998)).

Drapeau et al. (2000) present the results of an experiment

on Drosophila melanogaster, which, they claim, are

inconsistent with the heterogeneity theory of mortality

plateaus. A more nuanced analysis of the data, we contend,
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points in the opposite direction. Not only does this force us

to reevaluate the conclusions of this experiment, it may

serve as a paradigm for some pitfalls in survival-data

analysis.

The authors aim to test the prediction that ‘populations

that are greatly differentiated for stress resistance should

show great differences in their late-life mortality schedules,’

without stating explicitly what those differences should be.

There is, in any case, no single consensus ‘heterogeneity

model’—some mathematical treatments of heterogeneity

models may be found in Vaupel et al. (1979, 1998), Vaupel

and Carey (1993) and Service (2000). Since heterogeneity

produces its plateau gradually and indirectly—and transi-

ently, if the variation is only in the initial mortality, and is

bounded—the definition of the plateau will inevitably be

ambiguous. Service et al. (2000), in a critique of this same

work, has argued that reasonable versions of the heterogen-

eity model could produce plateaus that are fairly insensitive

to selection. In a more extensive work Service (2000), the

same author has shown that a population with Gaussian-

form heterogeneity should see the plateau levels rise under
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Table 2

Level of mortality plateau
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selection for increased robustness. On the other hand,

consider a population composed of just two strains, each

with mortality rate k e0.05x, with one having kZ10K4, the

other kZ10K6. The heterogeneity of k will produce a

transient plateau, and it is easy to see that increasing the

proportion of robust flies will lower the plateau. In other

words, any change in plateau level, or no change at all, is

still consistent with the heterogeneity explanation.

Even on the standard set by Drapeau et al. though, the

heterogeneity theory acquits itself well. Re-analyzing the

data, we find clear evidence for plateaus that are lower for

the robust strain. We contend that the authors of the original

study applied an inappropriate statistical model, one which

is badly misspecified for the observations, and would

consequently—as we show by applying it to simulated data

in Section 4—be incapable of confirming even quite large

and unquestionable differences in plateau level. The

plateaus are also more shallow in the selected population,

consistent with plateaus produced by population heterogen-

eity. The plateau timing, on the other hand, seems not to

have been altered. As a test of heterogeneity, this must be

seen as quite indirect, aside from the general principle that a

positive result is less probitive than a negative. At the same

time, it should influence the discussion of how, and whether,

interventions may affect mortality plateaus. The weight of

the experimental data shifts from strong evidence against

heterogeneity to weak evidence in favor.

The experimenters followed three different strains of

D. melanogaster: the SO strain, maintained from an original

wild type progenitor after many generations of selection for

starvation resistance; the CO strain, which had been subject

to no special selection; and the RSO strain, which had been

derived from the SO strain, but released from selection for

the past 25 generations. (A more extensive description of

these strains, their history, and the selection regime may be

found in Mueller et al. (2003).) Five replicates of each

population (males and females separated: thus, 30 popu-

lations in all) were followed until all had died.

The main conclusion of the paper is derived from Tables 1

and 2. (The boxes have been added, for emphasis.) These

numbers are based on the computation of a maximum-

likelihood estimator of the hazard rate, chosen from the class
Table 1

Breakday of mortality plateau
of two-part functions which begin gompertzian (exponen-

tially increasing), and then become constant for all times

after a ‘breakday’. The paper claims:

The data presented here do not indicate any clear

relationship between late-life mortality rates and large

genetic differences in stress resistance. In this respect,

our results provide a refutation of the heterogeneity

theory of late-life mortality.

A perusal of the data suggests, though, that the plateau

levels for the three groups are, in fact, significantly

different. It is true that the average plateau levels for the

three strains are indistinguishable. Observe, however, that

the values for the SO flies are strongly bimodal. In most of

the trials—four out of five for each sex—the SO flies had the

lowest plateau level of the three groups. This is balanced out

in the mean by two exceptionally high values, male replicate

5 and female replicate 3. Observe, too, that these two trials

(as well as three exceptionally high plateau levels for the

RSO strains) also correspond to outliers of the breakday,

values between 66 and 78. Twenty-three of the 30

breakdays, including all breakdays for the CO strain, are

between 42 and 52, while the rest are at least 66. It requires

no advanced statistical methodology to recognize the

potential for misdirection when statistical tests on means

are applied to such bimodal data.
2. Bias of the plateau estimator

What is the origin of these very high plateau levels, and

why do they correspond to late breakdays? Consider, for

example, the empirical hazard rates for the first CO and

RSO male replicate, as shown in Fig. 1. It is hard to see from

these plots why the RSO strain—which is below the CO

nearly everywhere—should be assigned a substantially

higher mortality plateau level. We suggest that this

discrepancy is an artifact of the statistical estimation

procedure.

Plotting the empirical hazard rates for different trials, we

see that the parametric model chosen by Drapeau et al.—

Gompertz up to some point, constant thereafter—does not



Fig. 1. Empirical hazard rates for first replicate of CO and RSO male flies.

The lines are for the RSO flies, while the ‘C’ symbols represent the CO

flies.
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fit terribly well. After the ‘breakday’, mortality rates

continue to increase, albeit more slowly. The maximum-

likelihood algorithm is thus in the position of approximating

the latter part of an increasing function by a constant. If this

tail becomes longer, the algorithm seeking a flat plateau

would be expected to strike later, and thus (since mortality

rates are still increasing), higher. More to the point, the

length of the tail, depending as it does on the extended

survival of a very few flies, will be particularly prey to

random fluctuations. Since the RSO and SO strains have

lower late-life mortalities—for example, on day 70, when

more than one-sixth of SO males are still alive, over 98% of

CO males have gone the way of all flesh—there will be a

bias toward higher estimated plateau levels.

We sketch this situation in Fig. 2. The black curve

portrays a hypothetical empirical log-hazard-rate curve,
Fig. 2. Illustrating the potential bias in the flat-plateau estimate. The black

curve represents a hypothetical mortality rate, the red curve the same rate

decreased by a constant factor. The dashed lines show the estimated three-

parameter fit, and the dotted lines show the real and estimated plateau

levels. The discrepancy ‘a’ is the true plateau difference, while ‘b’ marks

the (smaller) difference between the plateau estimates.
which might be observed if the true underlying mortality

rate were exponentially increasing at one rate up to a fixed

age, and then switched to a lower exponential rate. The red

curve shows the same mortality rates, reduced by a constant

factor. One might reasonably attribute to each mortality

curve a ‘plateau’, with the plateau for the black population

being simultaneous with, but higher than the plateau for the

red.

We have drawn dashed lines to approximate fitting a flat-

plateau curve to these data. Because the mortality levels are

generally reduced in the red curve, more flies remain alive,

and the post-plateau phase continues longer. The experience

of early days, when more flies remain alive, weighs heavy on

a maximum-likelihood estimator, while the time after the

final demise has no weight at all. Consequently, the red

estimator, representing a population with more late survi-

vors, is more strongly influenced by late mortality than the

black estimator: its plateau will strike later, hence also

relatively high. Instead of the true difference in plateau levels

‘a’, we estimate the smaller difference ‘b’.

It is not merely that an increasing-plateau curve

may provide a better fit. More important, we show that

the flat-plateau estimator is biased when the mortality rates

do not really flatten out, so as to compress the plateau levels,

and conceal those differences that are present. (This effect

may be exacerbated by the substantial differences in starting

numbers between different strains.) In addition, the red-

curve plateau estimates, depending as they do on a longer

period of stochastic survival of small numbers of individ-

uals, may be expected to be more unstable and variable than

the black-curve estimates.

This objection has some similarities to the forceful

criticism of the same paper made by de Grey (2003b). de

Grey rejects maximum likelihood estimation altogether,

along with any procedure that gives more weight to larger

numbers of deaths, thus exaggerating the influence of early

mortality. He suggests that maximum-likelihood procedures

with misspecified models is always wrong-headed. He

prefers to minimize the sum of absolute differences to the

total survival, though he fails to offer, either here or in

(de Grey, 2003a), evidence for believing that his procedure

would do better. Applying the alternative procedure to the

Drapeau et al. data, he concludes that the excellence of fit is

‘readily seen’ in a plot of total survival, ignoring the fact

that total-survival plots are notoriously coarse tools for

recognizing differences in mortality rates.

de Grey dismisses the advantages of MLE as being only a

mathematical ‘seduction’, appropriate only in ideal cases,

when the true mortality curve is represented exactly by the

model. While this argument is consonant with our own—

like any estimation procedure, the effectiveness of MLE

fitting depends on the ‘true’ result being close to the class of

available models—it exaggerates the details of the esti-

mation procedure, and ignores the particular virtues of MLE

in compensating for random fluctuations in death rates while

the at-risk population is shrinking. (de Grey’s other
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applications of his method, in de Grey (2003a), were to

populations large enough that random fluctuations in death

numbers through most of the life course would be

negligible.) Furthermore, MLE interpolates weightings

smoothly and naturally as the population dies out. de

Grey’s approach, by contrast, assigns equal weight to each

day’s mortality, until the population has died out comple-

tely. At this point, the weight (unavoidably) plummets to 0.

This singularly fails to address a major source of bias, which

is the longer total lifetime—hence a more extended plateau,

slowly rising—for the low-mortality strains. Adding to this

de Grey’s arbitrary choice to minimize the sums of first

powers, rather than the infinity of other possibilities, we see

considerable cause for skepticism of de Grey’s approach.

Our alternative, described in Section 3, is to maintain the

fitting procedure in its essence, but to improve the class of

models, making it less badly misspecified. We propose two

alternative models. In one, we alter the crucial plateau

region, allowing the ‘plateau’ to increase, albeit at a slower

rate. This model has the same number of parameters as the

original (four), because we do not allow the mortality to

jump at the breakday, but maintain a continuous mortality

curve. It seems to us more sensible to have the plateau

mortality start at the same point where the early-life

mortality leaves off. Our second alternative model, also

continuous, and also with four free parameters, is a version

of the popular logistic Gompertz mortality curve.

We demonstrate the success of this approach in several

ways. Both alternative models drastically reduce the spread,

and eliminate the bimodality, of estimates for different

replicates of the same strain. We also show, by simulations,

in Section 4, that wild fluctuations and biases, like those

observed in Drapeau et al. would indeed appear when

mortality curves with rising plateaus are pressed into a flat-

plateau mold.

The problem of maximum-likelihood model-fitting has

also been analyzed at length, through simulation studies

similar to those presented here, by Pletcher (1999). While

the specific questions considered were different—Pletcher

considered, on the one hand, the ability of statistical tests to

distinguish a logistic mortality curve from an unbent

Gompertz mortality, and, on the other hand, the ability to

discern the differences in Gompertz mortality between two

different strains—some of the conclusions are relevant to

our study as well. In particular, he considered the effect of

fitting a Gompertz mortality curve to data which actually

followed the Gompertz-Makeham pattern (with an added

age-independent mortality term) or logistic, finding that the

misspecified mortality model ‘results in parameter estimates

that are highly biased.’
3. Alternative models

We demonstrate the distortions of the flat-plateau model

in two ways. To begin with, we show that an alternative
model of plateau behavior provides more stable results, and

reveals clear differences between the populations. It is not,

we reiterate, a matter of finding a ‘better’ fit. Rather, we

show that our models avoid both the wide divergences in

breakdays, and the odd disparity in variability of plateau

levels among the populations. There are still far more data

points than parameters, so there is no danger of overfitting.

It would seem that a claim of ‘no difference’ between

populations must be abandoned if a reasonable alternative

model does uncover such a difference. (This assumes, of

course, that one has not tested and abandoned many

alternative models.)

The ‘flat-plateau’ model fitted in the original paper was

hFðtÞ Z
k eat for t%T ; and

k 0 for tOT
:

(
(FP)

Our alternative models are

hPðtÞ Z
k ea1t for 18! t%T ;

k ea1TCa2ðtKTÞ for T ! t;

(
(IP)

and

hLðtÞ Z k
1 CA eat

1 CB eat
; (LG)

In the first alternative model, which we call the ‘increasing

plateau’ (IP), the hazard is growing exponentially at rate a1

up to the breakday T, and after that at rate a2. Even this does

not suit the general shape of the hazard-rate curve. The

declining mortality early on, which is evident in Fig. 1, is

typical of nearly all the replicates. This has serious

consequences when we try to fit a model like (IP). The

line which fits the early life will be an egregiously poor fit: a

sharp decrease followed by a much longer sharp increase is

represented by a gradual increase. In many cases, this

muddled compromise slope will be less than the slope in late

life. That is, instead of a mortality deceleration, we appear

to have mortality acceleration.

What we are interested in, when we consider the question

of ‘mortality plateaus’, is the change in slope of the log-

mortality curve from midlife to late life. In nearly all the

replicates, the decrease in the slope is obvious, but would be

masked by mixing the midlife increase with the early-life

decrease. One solution would be to fit a three-part curve: a

decreasing piece at the start, followed by two increasing

pieces. One must ask, though, what function would the early

piece serve? It is an irrelevant distraction from the behavior

that we seek to analyze. The alternative, which we have

preferred, is simply to drop the early piece, and analyze the

mid- and late-life mortality data. We have chosen to analyze

the data starting after day 18.

For some, this procedure may ring some alarm bells. It is

close to a credo of honest statistical analysis that we need to

accommodate ‘all the data’, that to select favorite data

points is an opening to manipulation and deception. Recall
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that this study is not intended as a test of the Gompertz-with-

breakpoint model, but rather to use the model as a tool for

teasing out the differences in plateau behavior. Our point is

that the original statistical test effectively lost power by

shoehorning data into an inappropriate model; we boost the

discriminating power in the test by applying a more suitable

model to only the relevant portion of the data. This is not

‘data snooping’; we are simply electing to analyze only the

mid- and late-life data, in all replicates equally, where it is

apparent that the chosen models (both ours and that of the

original paper) do not suit the early mortality data. This is

consistent with de Grey’s warnings (discussed above) of the

errors which could be generated by allowing early-life

mortality to dominate the analysis of late-life trends. The

success of our alternative may be seen in its eliminating the

wild fluctuations in the estimated parameters from one

replicate to the other, within the same strain. (We note, as

well, that a recent analysis of Drosophila survival data by

Miyo and Charlesworth (Miyo) found the same difficulty

with decreasing early-life mortality, and they also chose to

manage it by truncation.)

The second model is the four-parameter logistic

Gompertz (LG) model. This has been proposed frequently

(Vaupel et al., 1979; Horiuchi and Wilmoth, 1998) as
Fig. 3. Fitting three different models to the mortality data from the first replicate of

The circles show the empirical hazard rate.
a model, though usually with one fewer parameter, taking

our A to be 1. Beginning as it does with a period of mortality

acceleration, this model fits the early data without unduly

compromising the late-life fit. The clearly defined plateau

level is surely an advantage as well, when the plateau levels

are what we wish to compare. We define the plateau level in

(IP) to be the level when the exponential rate of increase

changes from a1 to a2 (the parameter T), essentially because

this is the only level which is clearly linked to the plateau

behavior. There remains a certain degree of arbitrariness to

this choice, so that it is valuable to compare these results to

those from the (LG) model.

We note that all the models have the same number of

parameters. In addition, the alternative models have the

advantage of being continuous, as opposed to the flat-

plateau model of Drapeau et al. which has a jump at the

breakday. We show an example of fitting all three models to

the experimental results for the first replicate of male CO

flies in Fig. 3.

In each case, we applied the optima obtained by the

default algorithm of the optim function in the R statistical

language, an implementation of the Nelder–Mead

algorithm (Nelder and Mead, 1965). For each model, we

have set four different starting points, and selected the best
male CO flies. The red curve is the FP fit, the blue is IP, and the green is LG.



Table 4

Plateau mortality levels in the piecewise log-linear model (IP)

Replicate Male Female

CO RSO SO CO RSO SO

1 0.0786 0.0306 0.0454 0.118 0.0354 0.0541

2 0.109 0.0515 0.0329 0.0755 0.0428 0.0519

3 0.124 0.0301 0.0221 0.101 0.0540 0.0544

4 0.115 0.0602 0.0547 0.0660 0.0767 0.0749

5 0.0919 0.0577 0.0336 0.0594 0.0733 0.0545

Mean 0.104 0.0460 0.0377 0.0840 0.0564 0.0580

SD 0.0185 0.0147 0.0126 0.0248 0.0182 0.00951
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fit (highest likelihood) for each replicate. We then double-

checked these results by comparing them to those obtained

from a quasi-Newton optimization algorithm, which is

realized in R by the nlm function. In each case, the same

result was found. We have also checked our results for the

30 datasets with an exhaustive grid search, on a grid of about

1.5 million points. (The grid was fine enough to match all

four parameters with an error of about 10%.) In no case did

the grid search turn up a better fit—that is, a higher

likelihood—than the standard algorithms.

We point out here that the picture looks very different

when we apply the two algorithms to fit the (FP) model. For

many of the 30 data sets the two algorithms found

substantially different curves, though the log likelihoods at

these local optima differed only slightly. This is another

defect of the (FP) model, which is related to its being

seriously misspecified for these data. In Section 4, when we

need to fit the (FP) model to simulated data, we apply both

algorithms with all four starting points to each simulation

run, in order to give ourselves the best chance of finding the

true maximum-likelihood estimates.
3.1. The increasing-plateau model

Fitting the data to the (IP) model, we obtained the

breakdays given in Table 3. (We have set TZ2TOC19,

where TO was the parameter delivered by the MLE

computation. The choice of 19 here is slightly arbitrary,

since the data points come only every 2 days, but differences

between estimates should be meaningful.) Note that these

are more stable than the original estimates, and there are no

extreme outliers in these estimates. (We must mention,

though, that we could have found a slightly better fit for

replicate 3 of the SO females, if we had allowed decreasing

plateaus.) If we call the mortality at day T the plateau level,

we obtain the levels in Table 4. Basic summary statistics for

each replicate are included at the bottom. (Here, and

elsewhere, we use the standard deviation with
ffiffiffiffiffiffiffiffiffiffiffi
nK1

p
in the

denominator.)

It is not immediately obvious how these numbers should

be compared. What is an appropriate statistical test, given

that we have a small number of measurements. and little

idea of what ‘error’ distribution ought to be supposed?

Which of the parameters ought to be given most weight?
Table 3

Breakday of mortality plateau in the piecewise linear model (IP)

Replicate Male Female

CO RSO SO CO RSO SO

1 42.3 46.7 45.0 50.0 50.5 49.3

2 45.0 44.9 44.1 45.6 42.5 46.2

3 45.9 45.9 44.5 46.4 51.1 52.4

4 45.1 46.1 44.8 40.5 49.6 46.3

5 44.1 43.4 44.7 45.7 51.6 49.6
Fortunately, we find that various approaches tell essentially

the same story: among the males, there is a significant

difference between the plateau behavior of the selected

strains (SO and RSO) from that of the unselected (CO),

while the difference between SO and RSO is not statistically

significant.

We begin by noting that, in contrast to the estimates of

Drapeau et al. we obtain roughly the same breakdays for

all strains. On the other hand, the plateau levels for the CO

strains are higher than those for either of the selected

strains (RSO and SO), while the two selected strains have

roughly the same plateau levels. For the males, the

difference is statistically highly significant; for the females,

the difference is not so pronounced. For example, if we

follow Drapeau et al. in performing an ANOVA test on the

three male strains, testing for equality of means, we find an

F-statistic of 27.2 for the males, leading to a rejection of

the null hypothesis with a p-value of 3.4!10K5. Applying

the same test to the female strains yields an F-statistic of

3.48, with a corresponding p-value of 0.064. If we test the

strains pairwise, using Welch’s two-sample t-test, we find

that equality of means between the male CO and RSO is

rejected, with a p-value of 0.0007; between the CO and SO

the p-value is 0.0003. For the females, the corresponding

p-values are 0.08 and 0.078.

Of course, we have no reason to think that these

replicates are anything like draws from a normal distri-

bution. If we apply the above tests to the logarithms of the

plateau levels, the results are qualitatively the same. More

reasonably, we may apply a nonparametric test. We note

that, for the males, the lowest plateau level for the CO

strains is higher than the highest of either the RSO or SO

strains. If we apply the standard Wilcoxon rank-sum test, we

obtain, of course, the maximum W-statistic of 25, telling us

to reject equality of means between CO and either the RSO

or SO at a p-value of 0.008. For the females, the same test

yields a p-value of 0.03 for equality of the CO and SO

means (and 0.15 for equality for CO and RSO). Given the

multiple testing involved, the former should probably not be

treated as statistically significant.

As already noted, the plateau levels in this model are

problematic, because the time of determining the plateau

level is somewhat arbitrary. While we still contend that

differences in plateau levels still should be reflecting real



Table 5

Difference between the pre- and post-plateau slopes in the piecewise log-

linear model (IP)

Replicate Male Female

CO RSO SO CO RSO SO

1 0.140 0.0720 0.0556 0.0699 0.0438 0.0252

2 0.171 0.127 0.115 0.0889 0.0587 0.0358

3 0.175 0.135 0.0503 0.0900 0.0693 0.0100

4 0.170 0.141 0.114 0.0643 0.0604 0.0534

5 0.176 0.170 0.0484 0.0615 0.0696 0.0173

Mean 0.166 0.129 0.0768 0.0749 0.0604 0.0283

SD 0.0152 0.0359 0.0347 0.0136 0.0105 0.0170

Table 7

Estimated plateau levels in the logistic Gompertz model (LG)

Replicate Male Female

CO RSO SO CO RSO SO

1 0.113 0.188 0.0950 0.167 0.119 0.0954

2 0.117 0.0845 0.0537 0.165 0.108 0.0845

3 0.144 0.111 0.141 0.164 0.0982 0.104

4 0.133 0.0947 0.0769 0.164 0.119 0.115

5 0.106 0.0817 0.2274 0.162 0.118 0.159

Mean 0.123 0.112 0.118 0.165 0.112 0.112

SD 0.0154 0.0438 0.0686 0.00294 0.00921 0.0289
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differences in the plateau behavior, it makes sense to look to

other parameters for confirmation. In particular, we consider

the strength of the plateau, by looking it the change in slope.

The absolute differences are given in Table 5, while the

difference in logarithms is given in Table 6.

Applying the ANOVA test to the absolute differences in

slope, we reject the equality of means for the males at pZ
0.00055 (FZ15.0); the females yield pZ0.079 (FZ3.15).

The Wilcoxon test tells a similar story: pZ0.015 for the

male CO-RSO comparison, pZ0.008 for the male CO-SO

comparison. On the other hand, we see a slightly different

picture when we look at the differences in the slope

logarithms. There, the ANOVA test rejects equality of

means for males (pZ0.0018; FZ11.2) and for females

(pZ0.00061; FZ14.6). The significant difference for the

females, it must be noted, is between the SO and the other

two strains, and no pair attains statistical significance

individually, whether by the t test or the Wilcoxon test. For

the males, the t test and the Wilcoxon test give essentially

the same result as was found for the absolute slope

differences.
3.2. The logistic Gompertz model

As has already been noted, while the piecewise linear

model yields fairly clearcut results, it has defects that might

make the results seem dubious In particular, the plateau

level is not uniquely defined, and fitting the model requires

that we drop the early data. While we have argued that these

are reasonable procedures for the kind of statistical
Table 6

Difference between the logarithms of pre- and post-plateau slopes in the

piecewise log-linear model (IP)

Replicate Male Female

CO RSO SO CO RSO SO

1 1.84 0.882 0.998 1.41 0.796 0.614

2 3.62 1.61 1.75 1.08 0.960 0.980

3 3.31 1.52 0.837 1.41 1.30 0.305

4 3.14 1.81 1.77 0.835 1.26 1.20

5 2.97 1.93 0.770 0.831 1.33 0.374

Mean 2.98 1.55 1.22 1.11 1.13 0.694

SD 0.679 0.408 0.494 0.289 0.238 0.386
questions that are at issue here, it would not be inappropriate

to try to confirm the results with a different model. This will

also support our contention that the original analysis of

Drapeau et al. made a particularly unfortunate choice of

model, not that our piecewise linear model is the optimal

choice.

We present two different measures of the plateaus: the

plateau level (Table 7), and the maximum negative second

derivative of the log hazard (Table 8), which we take as a

proxy for the strength of the plateau.

One noticeable difference to the fitting of the piecewise

log-linear model is the incomplete success in avoiding large

fluctuations in the characterizing parameters. The male RSO

and SO flies each have one extreme outlier in the estimated

plateau level, and one extreme outlier in the plateau strength

parameter. This means that, despite the conspicuous trend

toward lower plateaus in the RSO and SO strains, it is

impossible to reject the hypothesis of equal mean plateau

levels. The female flies show a much clearer pattern. Where

the evidence from the log-linear model was ambiguous,

yielding only borderline significant p-values, the female

strains show very low variability within strains, and strong

differences between strains. The plateau level estimates for

the female CO replicates are all larger than the largest of the

estimates for the RSO and SO replicates, yielding the

minimum p-value of 0.008 for the Wilcoxon test for equality

of means in either comparison CO-RSO or CO-SO. The

ANOVA F-test gives us a p-value of 0.0005, while t-tests

for comparing CO females with RSO and SO females yield

p-values 0.00016 and 0.015, respectively.
Table 8

Strength of the plateau: maximum negative second derivative in the logistic

Gompertz (LG) model

Replicate Male Female

CO RSO SO CO RSO SO

1 0.0624 0.0118 0.0185 0.0211 0.00907 0.0193

2 0.0738 0.0656 0.0706 0.0295 0.0161 0.0129

3 0.0689 0.0139 0.00720 0.0265 0.0173 0.00937

4 0.0818 0.0636 0.198 0.0241 0.0166 0.0206

5 0.0846 0.754 0.00820 0.0195 0.0187 0.0116

Mean 0.0743 0.182 0.0605 0.0241 0.0156 0.0147

SD 0.00912 0.0.321 0.0813 0.00401 0.00376 0.00490
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The same clear difference is seen in the plateau strengths,

between the CO and the other females. The Wilcoxon test

again yields p-value 0.008 for the CO-RSO comparison, and

0.016 for CO against SO. The corresponding t-test p-values

are 0.008 and 0.011.
4. Simulations

In Section 3 we showed that the inferences from the data

of Drapeau et al. depend on the choice of model for the

plateau. Most notably, the flat-plateau model finds a wide

variation in the estimates, and consequently no verifiable

difference between the strains, while our alternative models

find significant differences for the males or for the females,

but not both.

The intuitive arguments of Section 2 are, unfortunately,

difficult to make mathematically precise. An alternative is to

study the question empirically, on simulated data. We

consider five imaginary strains: The NO (Normal) strain has

mortality rates given by the empirical mortality rates of the

total population in all of the experimental replicates. This is

intended to give a baseline of mortality rates that are more

or less like those of real flies. We then generate HM (High

Mortality) and LM (Low Mortality) hazard rates by

increasing or decreasing all age-specific hazard rates by

25%, and VHM and VLM hazard rates by increasing or

decreasing them by 67%. The difference between NO

mortality and either V strain is quite large, close to the

maximum hazard-rate differential that is sustained over any

extended period of time between the strains. The difference

between the VHM and VLM hazard rates are enough to

produce nearly a 50% increase in life expectancy, from 38 to

55 days. Whatever we think the plateau level ought to mean,

and whatever statistical estimation procedure we choose, it

seems reasonable to expect that it should find a difference

between the plateau levels of two strains which have the

same shape, and differ by a substantial constant multi-

plicative factor.
Table 9

Mean and standard deviation for 2000 simulated plateau levels and breakpoints f

Parameter Model Strain

VHM HM

Plateau level Mean FP 0.115 0.08

LG 0.124 0.09

IP 0.104 0.07

SD FP 0.0043 0.00

LG 0.0051 0.00

IP 0.0057 0.00

Break-point Mean FP 41.5 43.3

LG 42.0 42.1

IP 44.4 44.1

SD FP 0.72 4.9

LG 0.36 0.42

IP 0.27 0.28
The results of 2000 simulations of each virtual strain

are summarized in Table 9, while histograms of all the

results are presented in Figs. 4–6. In each trial, we

simulated a population of 1350 flies (the average over

the real trials), and then estimated the plateau level for

the simulated mortality counts with each of the three

models. (We have given the means, but the medians are

almost the same, and the result would be qualitatively

the same if we examined the means of the logarithms of

the plateaus.) Ideally, the plateau level estimates should

be in the ratio 1.67:1.25:1:0.8:0.6. The realized ratios

are
FP
rom e

63

23

06

62

318

39
1.64:1.23:1:1.06:0.93
LG
 1.63:1.21:1:0.85:0.77
IP
 1.93:1.31:1:0.78:0.57
The FP and LG models perform about equally well on

the high-mortality strains, coming quite close to the ideal

ratios. On the low-mortality strains, though, the FP model

fails spectacularly, finding an increase in the plateau level

from the NO strain to the LM strain, and only a slight

decrease even to the VLM strain. This results, as we see in

Fig. 4, show a split in the breakpoint estimates exactly like

the one we saw in Table 1, with about half the estimates

staying down in the 40s, and the other half jumping up into

the 70s. The LG model also underestimates the differences

in the plateau levels, particularly for the VLM strain, but

comes far closer to the truth.

Perhaps the most direct way of testing the models is

to carry out the original significance test on the

simulated data. What we have done is to take the 2000

simulated plateau levels for high, normal, and low, as

representative of the distribution of empirical mortality

levels obtained from these strains. We simulated the

Drapeau et al. experiment 1000 times, by drawing five

samples from each strain. When we performed an

ANOVA F-test for differences among the means of

three strains simultaneously, we obtained the results in
ach of the five virtual strains

NO LM VLM

0.0701 0.0745 0.0655

0.0760 0.0644 0.0586

0.0538 0.0418 0.0304

0.0032 0.0179 0.013

0.0025 0.0028 0.0069

0.0028 0.0022 0.0015

41.6 59.1 66.1

42.5 43.4 47.8

43.9 43.8 43.7

2.3 17 16

0.55 1.1 3.6

0.31 0.33 0.39



Fig. 4. Histograms of 2000 simulated plateau levels and breakpoints, estimated from the FP model.
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Table 10. In column V we show the results when the

three strains were VHM, NO, and VLM; in column M

we show the results for more moderate differences in

mortality rates, represented by the three strains HM, NO,

and LM. The conclusion is clear: whereas the LG and IP

models both succeed in verifying the differences in the

plateau levels even at the 10K6 significance level,

whether the mortality difference is large or moderate,

the FP model is reliable only when the difference is

large. When the difference in mortality levels is
moderate, the FP-based test will uncover a difference

at the 0.05 level in less than half the experiments.

Table 11 gives the results of taking 1000 random

samples of five replicates each from the NO strain and one

other, and testing (with the t-test) the hypothesis that the

means differ. When we performed a t-test to test the

difference in mean plateau levels, we found significant

differences at the levels 0.05, 0.01, and 0.001 in a fraction

of the simulations given in Table 11. As expected, the

FP model fares poorly when the alternative strain has



Fig. 5. Histograms of 2000 simulated plateau levels and breakpoints, estimated from the LG model.
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lower-than-normal mortality. Interestingly, LM proves

slightly easier to distinguish from NO than does VLM, but

the difference points in the wrong direction. When the

alternative is HM, the FP-based test can usually confirm
a difference from the NO plateau level, though by no

means always.

The IP model again performs best: nearly always it

allows the difference between any of the virtual strains



Fig. 6. Histograms of 2000 simulated plateau levels and breakpoints, estimated from the IP model.

1 The program is available from Laurence Mueller: idmuelle@uci.edu.

D. Steinsaltz / Experimental Gerontology 40 (2005) 101–113 111
and NO to be confirmed at the 0.01 significance level. The

LG model turns in a middling performance: for the high-

mortality strain, its discrimination is excellent, even

somewhat better than that of the FP model. For the low-

mortality strains, it nearly always delivers a significant

difference at the 0.05 level. As with the FP model, the LM

strain proves easier to distinguish from NO than the VLM

strain, because of the significantly increased spread of the

estimates for the VLM strain.

It might be argued, at this point, that we have not

applied exactly the same algorithm as Drapeau et al.

Maximum likelihood is a well-defined procedure, though.

We have compared our likelihood function to that of
Drapeau et al.1 and confirmed that we are computing the

same function, up to a constant. At the same time, any

maximum-likelihood fitting procedure stands or falls on

the accuracy of its optimization method. The optimization

method of Drapeau et al. cannot be reproduced in detail,

since it involved (L. Mueller, private communication) a

significant degree of searching by hand. At the same time,

we would argue that this is not a fault of the present work.

We are not testing a ‘private’ algorithm, but, rather, the

statistical procedure publicly described. The point of our

mailto:idmuelle@uci.edu


Table 10

Fraction of tries in which an F-test found a significant difference (at the

given significance level) in mean level in five simulated samples each from

the high-mortality, normal, and low-mortality strains

Signifi-

cance

level

Model

FP LG IP

V M V M V M

0.05 1.0 0.434 1.0 1.0 1.0 1.0

0.01 1.0 0.164 1.0 1.0 1.0 1.0

0.001 0.998 0.074 1.0 1.0 1.0 1.0

10K6 0.588 0.034 1.0 0.961 1.0 0.970

The plateau level is computed from the stated model. In the columns

marked V, the high and low mortalities are represented by VHM and VLM,

respectively; in the columns marked M, the high and low mortalities are

represented by HM and LM, respectively.
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simulations is to confirm our claim that the flat-plateau

model is poorly suited to teasing out differences in plateau

levels between strains. This argument would only be

muddled by attempting to reproduce not only the original

model, but also possible errors in the fitting procedure.

Instead, we have been at pains to write a reproducible

algorithm which reliably finds the true maximum like-

lihood, as described in Section 3. As already noted, one

weakness of the flat-plateau model is that the likelihood

function does not have a well-defined maximum. Exploring

the likelihood function turned up widely separated local

maxima, whose likelihood values differed only slightly.

Our version of the flat-plateau estimation procedure

does turn up the same flaws that were so conspicuous in

the original analysis: the vast spread of estimates for the

plateau levels and breakdays for replicates of the same

strain. Fig. 4 shows histograms of the plateau level and

breakpoint estimates from the FP model. We see that, as

the hazard rates fall, the plateau levels and breakpoints

split into bimodal distributions. The corresponding

histograms for the LG and IP models, Figs. 5 and 6 do

not suffer from this problem. The breakpoint estimates

from the IP model are particularly stable against random

perturbation.
5. Conclusions

It may seem that the results of the new fitting procedures

are ambiguous, or even contradictory. The one procedure
Table 11

Fraction of samples for which a T-test found a significant difference in mean plate

virtual strain, with the stated model for the plateau level

Sig. lev. Model

FP LG

HM LM VHM VLM HM LM

0.05 0.926 0.082 0.999 0.076 1.0 0.982

0.01 0.841 0.074 0.988 0.022 1.0 0.952

0.001 0.697 0.061 0.970 0.004 0.971 0.835
yields significant differences for the males, the other yields

significant differences for the females. On further reflec-

tion, though, it should be recognized that the results

reinforce each other, and support the conclusion that there

are indeed significant differences in the plateau behaviors

between the different strains.

To begin, remember that there is a substantial difference

between the quality of evidence provided by a negative

outcome to a statistical test, and that provided by a positive

outcome. The negative outcome (low p-value) tells us that

the observed data would be very unlikely under the null

hypothesis—in this case, if the different strains had

identical plateaus. The positive outcome simply tells us

that the differences observed could plausibly be the result

of random fluctuations. Thus, the natural conclusion from

the results described in Sections 3.1 and 3.2 is that the CO

plateaus differ substantially from the RSO and the SO

plateaus, for males and for females.

In addition, recall that the parameter estimates are all

prone to significant fluctuations and instabilities. When

the data for five replicates of the same strain yield

substantially the same parameter estimates, this may be

taken as strong evidence that this estimate is truly

characteristic of the strain. When, on the other hand, the

estimates for replicates of the same strain vary widely,

this could be merely an unfortunate failure of this model

to tame these data effectively. This forbids drawing any

conclusions about that strain; but ought not be seen as

contradicting a better result from a different model,

which brings the behavior under control. The stability of

our proposed models under random fluctuations, which

has been confirmed by the simulations of Section 4,

should be reassuring.

It could not be claimed that this experiment is decisive,

for or against the heterogeneity explanation for mortality

plateaus. It does suggest, however, that selection genuinely

does shift the plateau behavior. One deficiency is the lack

of a concretely defined heterogeneity hypothesis, to which

the results may be compared. What precisely should we

have expected, if the heterogeneity explanation were

correct? To shed more light on these questions will require

more careful analysis of heterogeneity’s predictions, such

as those of Service (2000), to be coupled with more

powerful experiments. Some steps in this direction have

recently been taken by in Mueller et al. (2003). There are,
au level in five simulated samples from the stated virtual strain and the NO

IP

VHM VLM HM LM VHM VLM

1.0 0.974 1.0 1.0 1.0 1.0

1.0 0.774 0.996 0.992 1.0 1.0

1.0 0.346 0.881 0.855 1.0 1.0
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however, substantial weaknesses in this work as well, as

argued by Service (2004).
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