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1. INTRODUCTION: WHAT IS THE MARKOV MELODY ENGINE?

Stochastic algorithms have had a consistent, if somewhat disreputable, role in
western musical composition at least since the 18th century. W. Mozart’s Musikalis-
ches Wiirfelspiel is perhaps the best known, but other composers, including J.
Haydn and C. P. E. Bach dabbled in this domain. As the name suggests, this
method of recombining carefully composed musical elements in random orders ac-
cording to a throw of the dice, was seen as an amusing novelty, not as a serious
compositional tool. Peter Welcker published in 1775, in London, a “Tabular System
Whereby Any Person without the Least Knowledge of Musick May Compose Ten
Thousand Different Minuets in the Most Pleasing and Correct Manner”. (For a
more extensive account of the history of stochastic music, see [Loy89] or [Pot71].)

In the twentieth century, the inclinations toward indeterminate notation on the
one hand, and formalized (serial) compositional strategies on the other, came to-
gether in the application of formal probability theory to music. [Bri75][chapters
8 and 12]. This has gone in two directions: One, indeterminate composition, in
which the precise choice of notes is turned over to dice, coins, or a computer pseu-
dorandom number generator; two, compositions more or less formally inspired and
structured by probability theory. The first mode has been advocated perhaps most
prominently by John Cage, the second by Iannis Xenakis, who after some initial
reticence plunged into the first as well.

Chance procedures can act on any element of music: pitch, timbre, rhythm,
choice of musicians, time and location of the performance, choice of repertoire,
etc. Most popular are random pitches, perhaps because of the superordinate role
played by melody in Western music, and the early appearance of a tractable theory
of musical pitches. The systems for generating random sequences of pitches have
been generally of two types. [Find examples?] The simplest approach is pitch-
centered, most commonly a Markov chain, where each pitch has a distribution
given for its successors. Thus, if the range is thirteen chromatic notes of a single
octave span, the model would be represented by 132 = 169 numbers, each giving
the probability that, say, Cf is followed by another C4, by D, or Eb, or E, and so
on. This sort of process generates melodies which are perfectly adequate for video
games, but are on the whole drearily static. The reason is not hard to find: There
is no sense of direction, no continuity, since every Cf has the same consequences,
no matter what preceded it. (Since each distribution has to add to 1, there are
really only 13 - 12 = 156 parameters which specify the model.)

A bit more continuity is achieved by interval-based programs. Here one might
define, say, 15 possible intervals, ranging in chromatic steps from a perfect fifth
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down, to a perfect fifth up, and give a stochastic matrix which defines the prob-
ability of one interval following another. For instance, it might be that a perfect
fourth down is likely right after a halfstep up, but unlikely after another perfect
fourth down. Such a model can have a minimal sense of direction, but all sense of
key is lost. The melody will wander willy-nilly over the available pitches, without
significantly emphasizing the notes of any scale.

We would like to combine these approaches, allowing some control over the pitch
statistics, together with some memory for the direction. The obvious thing to do is
to define a Markov chain whose states are several pitches in a row. For larger values
of ell, this will allow quite good approximations to the statistics of genuine melodies,
allowing us to distinguish between the likelihood of, for example, C — D — E — F
and FF— D — E — F. On the other hand, as £ increases the complexity of the model
grows exponentially. If there are n pitches, and the memory is £ notes long, then
we need nf(n — 1) numbers to specify the model. Furthermore, there is a danger of
overspecifying. If we imitate order-10 probabilities from a fund of prior melodies, we
are likely to end up largely imitating them piecewise note for note, while excluding
some possibilities that were musically reasonable, but which happen to be absent
from the data set.

Consider a two-step memory. If we have a range of 20 pitches — rather small
— the model will require 8000 parameters. How can we coherently supply so many
numbers? The approach we explore here is to select from all the possible models a
relatively few which have certain musical features in common. One musical feature
is the key, which is specified by a distribution on the pitches. Another is a stochastic
matrix of the second type described above, indicating the succession of intervals.
To simplify even further, we may reduce the intervals to a few classes; for example:
big jump down, small jump down, no move, small jump up, big jump up. With
twenty pitches and five interval classes, the input data will be only 20 + 5 -4 = 40
parameters, instead of 8000. What is more, the 40 parameters all have strong
intuitive meanings.

Obviously these 40 parameters will not in themselves fully specify the whole 8000-
parameter model. What we seek is a choice of the 8000 parameters which matches
the 40 that we input (in the sense that the long-term fraction of time choosing any
pitch is the given distribution, and the long-term fractions for successive intervals
are those given), and which is otherwise well balanced, a notion which is hard to
define precisely. In section 3 we describe one algorithm which more or less meets
these conditions.

2. ENGINEERING SOLUTIONS TO AESTHETIC CHALLENGES: AN APOLOGIA

Algorithms have an essential place in the creative process, and are inseparable
from randomness. This is the credo on which such experiments as we describe in
this paper stand or fall.

Consider a flautist, playing a simple tune. The breath is directed over the sharp
leading edge to create a turbulent, noisy flow. The noise is filtered by the form
of the flute, modified by the choice of fingering, generating what we call a tone.
The breath can be modified, the fingers know their place, but the foundation is the
inchoate and unpredictable stream of air. The performer does not, and could not,
manipulate the soundwave millisecond by millisecond, but instead, like a patient
parent, nudges it this way or that, in fact only shaping the statistical features of
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the sound, such as are realized in the frequency spectrum. Not coincidentally, this
suits the statistical nature of the listener’s auditory apparatus so well, as to seem
perfectly controlled.

Random generation of material, filtered by choice: this schema is ubiquitous.!
Unfortunately, this tells us almost nothing, since neither element of this dichotomy,
randomness or choice, is defined or understood. Even choices as simple as moving a
finger are at the moment intractable to psychology, to say nothing of the status of
aesthetic choices. Randomness is even worse off, being defined only by the absence
of this epistemically troubled “choice” (or of “determinism”, a philosophical swamp
nonpareil, into which we shall not venture). In a universe of infinite complexity,
our finite minds can only choose a very few elements of any process. What happens
to the rest? Chance is the concept which structures the hidden, the undetermined:
once you have fixed the range of possibilities, beyond any possibility of further
distinction, what else can you imagine but that the possibilities are cards in a box,
into which you reach your hand and pull one out at random. Probability theory is
the science which formalizes this intuition of chance.

It is important to distinguish general stochastic composition from haphazardness
on the one hand, and the strictures that might be called “mere randomness” on
the other. “Merely random” is in itself an incoherent concept. People often have
a notion, encouraged by some experiments in the middle of the 20th century, that
random composition must mean choosing from a given set of pitches with equal
probabilities, and performing the output without any further human intervention.
In fact, to call a procedure stochastic does not limit it at all, as it includes de-
terministic procedures as an extreme case. A stochastic process is defined by a
predetermined set of possibilities (the “sample space”) and a probability distribu-
tion which determines the relative likelihoods. The sample space could contain
whole phrases, melodic figures, or more abstract elements like crescendi and ca-
dences, and the distribution could relate the choices to one another in arbitrarily
complex ways. The procedure which chooses pitches from those available with equal
probabilities is a particular compositional choice, which views pitches as the funda-
mental elements, and weights them equally. The sample space can be structured,
complementing the structure of musical thought.

To transform large-scale structural models into a single random realization of mu-
sic demands, in many cases, enormous amounts of computation. It is only beginning
to become feasible, with modern computers, to manipulate these models within the
timeframe of a musical performance. This allows the composer/performer to im-
provise on a scale heretofore impossible, beginning to fulfill Xenakis’ fantasy from
the early Apollo years:

“le compositeur devient & l’aide des cerveaux électroniques une sorte de pi-
lote appuyant des boutons, introduisants des coordonées et surveillant les cadrans
d’un vaisseau cosmique naviguant dans 1’espace des sons & travers des constella-
tions et des galaxies sonores que seulement par le réve lointain il pouvait entrevoir
jadis.” [Xen63]

11t is perhaps noteworthy that the word aleatory, now almost synonymous with chance-based
compositional techniques, was first used in the 1950s, as a designation for the tiny fluctuations in
a natural tone which lend a sense of warmth. [Sch99, p.99]
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Randomness and automation, we claim, create genuinely new possibilities for mu-
sical composition, allowing the composer to work on larger scales with less effort,
hopefully freeing the attention for heretofore neglected aspects of the music. For
this hope to be realized, considerable work will be needed to produce a stochastic-
music toolbox, and a theory comparable to the classical Western music theory that
has structured composition over the past centuries. This paper is an attempt to
provide one small wrench for the toolbox.

The implications go beyond music composition, though. As with music record-
ing, which has generated hundreds of applications far from its original domain,
stochastic music models open up new uses, many of which will only become ap-
parent through use and familiarity. We mention here just two of the more obvious
possibilities, applications to music pedagogy and psychology. In music pedagogy it
is the production of so-called “intelligent instruments”. It has long been possible to
practice playing with recorded accompaniment, allowing individual musicians more
flexibility. But aside from contributing to a breakdown in musical society, such
recordings have the disadvantage of repetitiveness. Particularly in an improvisa-
tional music form, the exact notes of the accompaniment may be unimportant, the
accompanist in practice need not be brilliant, but repetition can be fatally soporific.
An automaton that can vary the accompaniment in moderately sensible ways, or,
even better, that can respond to the musician, would be a great improvement. One
impressive effort in this direction has been the BoB (Band out of the Box) software
by Belinda Thom.[Tho01]

Stochastic music models could also be useful in studying the psychology of music.
An analogy may be drawn to the famous Julesz conjecture in vision science. It had
been conjectured that the human visual system could only discriminate between
visual textures on the basis of their “second-order statistics”. The conjecture was
handily disproved in the mid-1970’s, as soon as statisticians conceived of algorithms
which could generate many patterns with identical second-order statistics.[DF81]
One might similarly hope that the algorithms which generate melodies with fixed
statistical features might be of use in testing hypotheses regarding the human per-
ception of statistical features in music. One example, to which we are eager to
apply the model in this paper, is the current controversy over the importance of
“gap-fill”.[vHHOO]

3. TECHNICAL DETAILS

We begin with the following data: a probability distribution, m, on the pitches
(represented as the integers 0 through n—1, and a stochastic matrix P on the set of
k interval classes. Implicit is also a list of m allowable intervals, and an assignment
of the intervals to classes. (The set of intervals in class v will be denoted S,.) If
there is more than one interval in a class, we will also need to determine the relative
weight to be sought for each interval in the class; the weights will be denoted by an
m-vector w, where ) ¢ w, =1 for each class v. (The reduction of the intervals
to a smaller number of interval classes is intended both to reduce the computational
difficulty, and to spare the user from distractingly irrelevant choices.) Intuitively,
7 represents the target long-term pitch distribution, while P gives the relative
probabilities of the available alternations of interval class. The goal is to realize
these local data in a Markov chain whose states are pairs (rg, Xy), where X, is the
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k-th pitch and ry is the interval X — X;_;. By a realization, we mean that

1 .y K—o0
(1) for all pitches 1, E#{lSkSK : szz} —— m;, and
(2)

1<k<K: S d Sy} K—oo
for all interval classes p and v, #l<k< 'k € Sy and reqs € Sy} Koo

#1<k<K :r,€8, e

We represent the desired stochastic matrix by P*(r,4; j), meaning the probability
that pitch 4, following on the interval of type r, will be succeeded by pitch j. Except
in pathological circumstances (which our conditions will inevitably exclude), the
matrix will be ergodic, so that there will be a unique stationary distribution, which
is to say, a probability distribution on pairs (r,4) such that for all intervals s and
pitches j,

(3) T (s,5)= Y, w(r,j—s)P(r,j—s;j)
intervals r

It is an elementary fact of the theory of Markov chains that the empirical occupation
measure converges to the stationary measure. This means that the condition (1)
will automatically hold if for all pitches ¢,

(4) Z 7 (r, 1) = m;.
intervals r
The asymptotic interval condition requires that

(5) Z Z Z w*(r, i) P*(r, 451 + s) = puPuv.

pitches i €S, s€S,

On the left side we have the fraction of steps which follow an interval of class u and
then choose an interval of class v; on the right side is the fraction of pairs of steps
in the target interval-class chain, in which the first is 4 and the second v.

In addition, 7* must satisfy two consistency conditions. First, if the current
interval and pitch are r and ¢ +r respectively, then the preceding pitch was ¢, which
must have the same stationary pitch distribution 7. Thus

(6) Z 7 (r,i+1) =7 for all pitches i.
intervals r

Also, the long-term distribution of the interval classes must be the same as the
stationary distribution of P, which means that

(7 Z Z (i) = pu for all classes p.
pitches i 7€S,

Alternatively, we may preassign weights to the different intervals within a class,
call them w, so )7 g w(r) =1, with the larger class of equations

(8) Z 7 (r,3) = pyw(r) for all intervals r € S,
pitches ¢
in place of (7).
There is one more set of conditions which needs to be imposed: suppose i is the
lowest pitch, and r is a positive interval. Then 7*(r, 1) is the fraction of notes which
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are tone 4, and follow a move up of size r, which is impossible. In general, then, we
must have

9) w*(r,i) =0 if ¢ — r is not a valid tone.

We may alternately view this as simply reducing the number of variables.

The condition (5) is quadratic in the unknowns, which could make it difficult
to solve. We evade this challenge by breaking it into two parts. We first find a
qualified candidate for the joint stationary distribution 7* as a solution to the linear
system of equations (4), (6), (9), and (7) (or (8)). On the basis of this choice of 7*
we then find the transition probabilities P* as a solution to the linear system (3),
(5), and the condition for these to be transition probabilities, namely

(10) Z P*(r,i;5) = 1 for all pitches ¢ and intervals r.

pitches j

3.1. Existence of solutions. The first question we need to ask is whether these
systems actually have a solution. We will consider only the larger system (with
the equations (7)), since any solution to these also solves the smaller system, with
equations (8). Unfortunately, we have at this point no general answer. Consider
first the equations for 7*: there are 2n + k equations and mn unknowns, minus
the zeroed-out variables, so that if the pitches are consecutive and the intervals
pass from —(m — 1)/2 consecutively up to (m — 1)/2, there are mn — (m? — 1)/2
unknowns. Two of the equations are duplicates, but there are no contradictory
equations. When n > m > 3 there are more variables than equations, which
guarantees a solution. What is not guaranteed is a positive solution.

There are many obvious problems that can obstruct a joint stationary distribu-
tion. For instance, if there are gaps of zero probability in the pitch distribution
larger than the largest available interval, no positive solution will be possible. A
solution may also be blocked by parity problems, such as when the pitches are
0,1,...,n — 1, where n is even, and the intervals are all even as well.

Another constraint is that ), rp, = 0. Here p, = w(r)p, when r is an interval in
class p, so p is the long-term fraction of time that the interval is r. The constraint
simply says that there is no average drift, which of course must be the case if this
is to describe a Markov chain on a finite set. The constraint follows formally from
(7) and (4), since

Zw*(r,i)i = Zmi = Zﬂ'*(r,i —r)i
i,r i Ty
= Zw*(r,i —r)i—r)+ ZW*(T,@' —r)r
T4 T4
= Zmi + ZPH‘-
i T

These hindrances are easy enough to exclude, but others are harder to define. For
instance, suppose there are three tones, called 0, 1, 2, with distribution (.1,.8,.1).
Then we have the relations

7 (=1,1) + 7 (+1,1) + 7°(0,1) = .8 = 7*(=1,0) + 7*(+1,2) + 7*(0,1)
7 (-=1,0) < .1
™(+1,2) < .1,
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which together imply that 7*(0,1) (the fraction of time that the process holds on
tone 1) is at least .6. This cannot be fulfilled, of course, if pg < .6. More generally,
consider a melody process on the n tones 0,1,...,n — 1, where the only possible
motions are —1, 0, and +1. The no-drift condition implies that p_1 = p4+1. What
is more, if we define 7; = m; — 7*(0,4), the equations imply that

(=14 =" (+1,i+1) =7 — 741+ T2 — - L 70
T (=1,i) =a"(+1,i+1) = 41 — Tig2 + - - £ Tn_1.
These collectively imply the parity condition,
0=17p_1 —Tp_2 +Tp_g—--- =70,

which says that the time spent moving into even-numbered tones must be the same
as time spent out of odd-numbered ones.
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