Residual methods



Residual methods

+ Cox-Snell residuals

+ Deviance residuals

* Martingale residuals

+ Schoenfeld residuals

+ delta-beta test



Martingale residuals

We start with the Oindividual martingaleO

M;(t) = Ny(t) ! /Ot Yi(s)e” * () dAo(s).

This represents the dilerence between the number of events observed for int
vidual ¢ up to time ¢ and the expected number. We turn this into a residual by
replacing the true distribution by the estimator:

Mi(t) == Ni(1) ! /;Yz'(S)@ET %105 4 Bo(s).

Usually we refer to M; = M;(" ) as the martingale residual. When the covariates
are constant in time,

S~

M= 8! & % By(Ty),

so it dilers from the Cox-Snell residual only by a constant.



M =4 — e XAy(Ty).
=t

Martingale residuals don’t have a natural distribution that we can compare them to.
But they encode information about how an individual’s fate compared to what
the model would have predicted.

Suppose there is a covariate z that has not been included in the current model.
And suppose z actually has a proportional effect on survival. That is, the model
we fit is correct, except that the true hazard is A(f | x)exp(f(zi)). We calculate
martingale residuals with respect to the fitted model (without z).

e
TR H e RN f(2)" logB(# )

n

So a smoothed plot of the martingale residual against z tells us what
the dependence of hazard rate on z looks like.



Martingale residual
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Lymphoma data
(K-M Example 11.2)

¥ Measuring disease-free survival in 43 patients
¥ Covariates:
¥ Type of transplant (allogenic or autogenic)
¥ Disease (Hodgkins or non-Hodgkins)
¥ Disease-transplant interaction
¥ Waiting time to transplant Z

¥ What is a good functional form for Z7?



Martingale Residuals
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Leverage and influence

¢ Qutlier: Unusual value of the outcome
« Leverage: Outlier for the covariate

“ Influence: Leverage and outlier
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Recall that deviance is a measure of discrepancy between model and data

D =2 log likelihood(saturated) ! log likelihood(!9).
ZZSUDZ{/ (|Oge!i-x7; _Ioge!sz-) dNi(S)—/ Yi(s) (e!;xi _e!Az-qu) dAo(S)}.
e mm A 0

We can maximise separately in each component 9; = N;(o0) = / Y;(s)e’ XidAy(s).
0

If Ag is replaced by the Breslow estimator Ag, we have

e JS2Yi(s)e X dAg(s) _ N ) M
s 70 fOOOYi(S)e!bxidA\o(S) log Ni(" )
so D=2 | loge™ife!ix ' dN;(s)! M,
i=1 0
R N(" ) ! - U
=2.:1 | log e Ny (") M
= £ d2
=1

# $7Y/ 2
where G= Sgn(M) | 2 Mi + 5i |09(5| I M)

d;is the deviance residual.



$7Y/ 2

di = sgn(M.) ! Z#Mi + 0 Iog((Si ! M)

Deviance residual should be approximately normal. Thus, we treat extreme values
such as |d;|1>2.5 as outliers.
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Linear Predictor
dresids = residuals( nki.cox , type ="deviance" )
Ip = predict( nki.cox , type ="Ip" )
plot( Ip, dresids , xlab ="Linear Predictor" , ylab ="Deviance Residual" )

abline( h=c(-25 , 25), col =2)
w=as.numeric(which( dresids >2.5))
text( Ip[w +.2,dresids [w, w, col =2)



Deviance Residual
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Linear Predictor

nki[dresids>2.5,¢(1,2,3,6,7,11)]

patnr d tyears age miratio histolgrade
139 23010.7118412 28 -1.2879 Poorly diff
229 331125078713 48 0.2289 Well diff
265 367 10.9746749 49 -0.5171 Intermediate



Measuring influence: Score residuals

Xi(t) = vector of observed covariates for individual I at time t;
N;(t) = counting process for individual 1 at time t;

0= estimate of Cox regression coelcients;

Ay (t) = estimate of baseline hazard in Cox model;

I
M (1) = Ni(t)! tYi (s)e”

| 0
ek
e ear

Xi1(S) gAYy (s) the martingale residuals;

w (1) = - - - =expected value of x.r for next event,
T y. 2
ERlea i given the current risk set.
i $ leverage o énartingale"residual
Uk (t) = Xik () ! ®ic(s) dNi(s)! dAR(s|x;) .
(=12
Uk Is called the score process The numbersrsck = Ug(tj) are the score

residuals



Measuring influence: delta-beta residuals

* “Jackknife”: Predecessor of the bootstrap. Measure variance
by examining how much the estimate changes if one data

point changes.
* Measure influence of observation 1 by computing!
| 1 = 81 9y where B is the estimate with individual i removed

* Computationally intensive: Need to fit the model n+1 times.

* May be approximated by

A
] (& D rseyi -
1=1



dbresids=residuals(nki.cox,type='dfbeta’)
colnames(dbresids)=names(nki.cox$coef)

summary(dbresids)
histolgradePoorly diff histolgradeWell diff age
Min. :=5.754e-02 Min. :-0.05315114 Min. -4.729e-03
lst Qu.:-6.440e-03 st Qu.:-0.0102776 lst Qu.:-4.133e-04
Median 6.151e-05 Median : 0.0003023 Median :-4.495e-05
Mean 0.000e+00 Mean : 0.0000000 Mean 0.000e+00
Biladiatms s o= 45 =073 Sited = O e =a 05200640 ! 3rd:-Qu.: 2.572e—-04
Max. : 5.378e-02 Max. s 0555520 Max. 4.288e-03
mlratio vasc.invasion+ vasc.invasion+/-
Min. :—0.0336815 Min. :—0.058909 Min. :-=0.123953
1st Qu.:-0.0052882 1st Qu.:-0.006447 lst Qu.:-0.005544
Median :-0.0007228 Median OO0 Median : 0.001761
Mean : 0.0000000 Mean : 0.000000 Mean = 0I0I0I0I0I0
Srd-Teue =002 58 S EdHOE 008 SES 3rd Qu.: 0.006607
Max. : 0.0461024 Max. S OER04 33105 Max. e OF 6 810
nki[fdbrestds Frd==04c (5253567, L 129
PaiEmisc tyears age mlratio histolgrade wvasc.invasion
110 195 0 11.545517 45 -1.1583 Intermediate -
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Time-varying proportional hazards:
Schoenfeld residuals

Idea: Suppose the proportional hazards assumption is approximately true,
but B=p(t) changes in time. How can we detect this?

Suppose {3 is increasing. Then our estimate is going to be too high early on,
and too low later. We expect that early on the individuals with events will
have unexpectedly low values of x, and later unexpectedly high values of x.

The Schoenfeld residuals are 5
lschik = Xik ! B Xk Ri, :
where the expectation is with respect to the fitted model. >, ; Yi(t)zx(t)e” i (t)

Properties of Schoenfeld residuals: > i Yilt )65 =0
+ If PH holds they are uncorrelated, with mean 0.
: P s )
+ If hazard proportional to exp(g(t)), Elrschik ] = 9(ti) E Xy R ! E X #R,

* Scaled Schoenfeld residuals: Multiply by inverse conditional covariance matrix
of xix

* For Cox model scaled S residuals are computed in R with the function cox. zph



Beta(t) for age

z=cox.zph(nki.fit)
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