
Residual methods



Residual methods

❖ Cox-Snell residuals

❖ Deviance residuals

❖ Martingale residuals

❖ Schoenfeld residuals

❖ delta-beta test



Martingale residuals
We start with the Òindividual martingaleÓ

Mi(t) = Ni(t) !
Z t

0
Yi(s)e�

T
xi (s)dA0(s).

This represents the di!erence between the number of events observed for indi-
vidual i up to time t and the expected number. We turn this into a residual by
replacing the true distribution by the estimator:

öMi(t) := Ni(t) !
Z t

0
Yi(s)e

ö�T
xi (s)d öA0(s).

Usually we refer to fMi := öMi(" ) as themartingale residual. When the covariates
are constant in time,

fMi = �i ! e�
T
xi öA0(Ti),

so it di!ers from the Cox-Snell residual only by a constant.



Martingale residuals don’t have a natural distribution that we can compare them to.
But they encode information about how an individual’s fate compared to what
the model would have predicted.

Suppose there is a covariate z that has not been included in the current model.
And suppose z actually has a proportional effect on survival. That is, the model
we fit is correct, except that the true hazard is λ(t|x)exp(f(zi)). We calculate
martingale residuals with respect to the fitted model (without z).

Fact: E
! "M

#
#z

$
!

%
! i

n

&
f (z) " logøh(# )

'
.

�M =
n�

i=1

�i � e�T xi Â0(Ti).

So a smoothed plot of the martingale residual against z tells us what
the dependence of hazard rate on z looks like.
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Lymphoma data 
(K-M Example 11.2)

¥ Measuring disease-free survival in 43 patients 

¥ Covariates: 

¥ Type of transplant (allogenic or autogenic) 

¥ Disease (Hodgkins or non-Hodgkins) 

¥ Disease-transplant interaction 

¥ Waiting time to transplant Z 

¥ What is a good functional form for Z?
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Leverage and influence

❖ Outlier: Unusual value of the outcome

❖ Leverage: Outlier for the covariate

❖ Influence: Leverage and outlier
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di := sgn( !Mi )
"

! 2
#!Mi + �i log(�i ! !Mi )

$%1/ 2
.

Recall that deviance is a measure of discrepancy between model and data

D = 2
!
log likelihood(saturated) ! log likelihood( ö! ).

We can maximise separately in each component

= 2 sup
! !

nX

i=1

⇢Z 1

0

⇣
loge! !

i x i � loge!̂ x i

⌘
dNi (s) �

Z 1

0
Yi (s)

⇣
e! !

i x i � e!̂ ix i

⌘
dA0(s)

�
.

�i = Ni(1) =

Z 1

0
Yi(s)e�

⇤
i xidA0(s).

If A0 is replaced by the Breslow estimator

ˆA0, we have

�⇤
i xi ! ˆ�xi = log

R1
0 Yi (s)e! !

i x i d ˆA0(s)

R1
0 Yi (s)eö! x i d ˆA0(s)

= log

Ni (" ) ! fM i

Ni (" )

,

D = 2
n!

i =1

"
! loge

ö! x i /e ! !
i x i

# !

0
dNi (s) ! $M i

%

= 2
n!

i =1

"
!

&

log
Ni (" ) ! $M i

Ni (" )

'
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%

=
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d2
i

so

where

di is the deviance residual.



di := sgn( !Mi )
"

! 2
#!Mi + �i log(�i ! !Mi )

$%1/ 2
.

Deviance residual should be approximately normal. Thus, we treat extreme values
such as |di|>2.5 as outliers.
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dresids  = residuals( nki.cox ,  type ="deviance" )
lp  = predict( nki.cox ,  type ="lp" )
plot( lp ,  dresids ,  xlab ="Linear Predictor" ,  ylab ="Deviance Residual" )
abline( h=c( -2.5 ,  2.5 ),  col =2)
w=as.numeric(which( dresids >2.5 ))
text( lp [ w] +.2 , dresids [ w], w, col =2)
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nki[dresids>2.5,c(1,2,3,6,7,11)]
    patnr d    tyears age mlratio  histolgrade
139   230 1 0.7118412  28 -1.2879  Poorly diff
229   331 1 2.5078713  48  0.2289    Well diff
265   367 1 0.9746749  49 -0.5171 Intermediate



Measuring influence: Score residuals

leverage martingale residual

x i (t) = vector of observed covariates for individual i at time t;

Ni (t) = counting process for individual i at time t;

ö! = estimate of Cox regression coe!cients;

öA0(t) = estimate of baseline hazard in Cox model;

öM i (t) = Ni (t) !
! t

0
Yi (s)e

ö! T X i (s) d öA0(s) the martingale residuals;

øxk (t) =
" n

i =1 Yi (t)xik (t)eö! T x i ( t )

" n
i =1 Yi (t)e

ö! T x i ( t )
;

Uk (t) =
n#

i =1

! t

0

$
xik (s) ! øxk (s)

%&
dNi (s) ! d öA(s|xi )

'
.

Uk is called the score process. The numbers rSc,ki := Uk (t i ) are the score
residuals.

=expected value of x.k for next event,
   given the current risk set.



Measuring influence: delta-beta residuals

❖ “Jackknife”: Predecessor of the bootstrap. Measure variance 
by examining how much the estimate changes if one data 
point changes.

❖ Measure influence of observation i by computing!

❖ Computationally intensive: Need to fit the model n+1 times.

❖ May be approximated by 

! ! ki = ö! k ! ö! k ( i ) where ö! k ( i ) is the estimate with individual i removed.

! ! ki !
p!

! =1

(öJ! 1)k! r Sc,!i .



dbresids=residuals(nki.cox,type='dfbeta')
colnames(dbresids)=names(nki.cox$coef)
summary(dbresids)

histolgradePoorly diff histolgradeWell diff      age            
 Min.   :-5.754e-02     Min.   :-0.0531514   Min.   :-4.729e-03  
 1st Qu.:-6.440e-03     1st Qu.:-0.0102776   1st Qu.:-4.133e-04  
 Median : 6.151e-05     Median : 0.0003023   Median :-4.495e-05  
 Mean   : 0.000e+00     Mean   : 0.0000000   Mean   : 0.000e+00  
 3rd Qu.: 7.473e-03     3rd Qu.: 0.0067411   3rd Qu.: 2.572e-04  
 Max.   : 5.378e-02     Max.   : 0.2557720   Max.   : 4.288e-03  

    mlratio           vasc.invasion+      vasc.invasion+/-   
 Min.   :-0.0336815   Min.   :-0.058909   Min.   :-0.123953  
 1st Qu.:-0.0052882   1st Qu.:-0.006447   1st Qu.:-0.005544  
 Median :-0.0007228   Median : 0.000711   Median : 0.001761  
 Mean   : 0.0000000   Mean   : 0.000000   Mean   : 0.000000  
 3rd Qu.: 0.0024548   3rd Qu.: 0.008373   3rd Qu.: 0.006607  
 Max.   : 0.0461024   Max.   : 0.043305   Max.   : 0.176801  

nki[dbresids[,4]>.04,c(1,2,3,6,7,11,12)]
    patnr d    tyears age mlratio  histolgrade vasc.invasion
110   195 0 11.545517  45 -1.1583 Intermediate             +
279   385 1  2.888433  53  0.3960  Poorly diff             -



Time-varying proportional hazards: 
Schoenfeld residuals

Idea: Suppose the proportional hazards assumption is approximately true,
but β=β(t) changes in time. How can we detect this?

Suppose β is increasing. Then our estimate is going to be too high early on, 
and too low later. We expect that early on the individuals with events will
have unexpectedly low values of x, and later unexpectedly high values of x.

r Sch,ik := xik ! öE
!
xik

"
" Ri

#
,

The Schoenfeld residuals are

where the expectation is with respect to the fitted model.

❖ If PH holds they are uncorrelated, with mean 0.
❖ If hazard proportional to exp(g(t)),
❖ Scaled Schoenfeld residuals: Multiply by inverse conditional covariance matrix 

of xik

❖ For Cox model scaled S residuals are computed in R with  the function cox.zph

Properties of Schoenfeld residuals:

E[r Sch,ik ] = g(t i )
!

E
"
x2

ik

#
#Ri

$
! E

"
xik

#
#Ri

$2
%

Pn
i=1 Yi(t)xik(t)e�̂

T
xi(t)

Pn
i=1 Yi(t)e�̂

T
xi(t)



z=cox.zph(nki.fit)
                           rho  chisq     p
histolgradePoorly diff -0.0661 0.3629 0.547
histolgradeWell diff    0.1686 2.3944 0.122
age                     0.0313 0.0919 0.762
mlratio                 0.1357 1.5480 0.213
vasc.invasion+          0.0459 0.1664 0.683
vasc.invasion+/-        0.1312 1.3028 0.254
GLOBAL                      NA 9.7256 0.137
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plot(z[3])
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plot(z[2])


